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• The tutorial solutions are written for reference and proofs will be sketched briefly. You
should try to fill in the details as an exercise. The solutions for Homework optional ques-
tions can be found in Homework solutions, which would be released after the deadlines.
Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.

1. The action is free ⇐⇒ g · x = x for some x implies that g = e ⇐⇒ for any g ̸= e,
g · x ̸= x ⇐⇒ Gx = {e} for all x ∈ X . The left regular action of G on itself is both
transitive and free. Transitivity: if h1, h2 ∈ G then h2 = (h2h

−1
1 ) ·h1. Freeness: if gh = h

then g = e.

2. Since an n × n matrix is invertible if and only if its column space has rank n, we can
regard an element [v1, ..., vn] ∈ F (Rn) as an invertible n × n-matrix, so that F (Rn) is
in bijection with GL(n,R) as sets (despite there is no group structure on F (Rn). This
idenitification is equivariant in that the action of GL(n,R) on F (Rn) is exactly given
by matrix multiplication A · [v1, ..., vn] = A[v1| · · · |vn]. Given any two ordered basis
[v1, ..., vn] and [w1, ..., wn], denote the corresponding matrices as A,B, then [w1, ..., wn] =
BA−1[v1, ..., vn] implies that the action is free. And transitivity follows from A[v1| · · · |vn] =
[v1| · · · |vn] =⇒ A = I by right cancellation. Alternatively, this action is the same as left
regular action of GL(n,R) on itself, so by Q1 it is free.

3.

g ∈ ker(ρ) ⇔ g · x = x, ∀x ∈ X

⇔ g ∈ Gx, ∀x ∈ X

⇔ g ∈
⋂
x∈X

Gx.

4. (a) Suppose h ∈ Gx′ , then hg · x = h · x′ = x′ = gx, so g−1hg ∈ Gx, therefore
h ∈ gGxg

−1. Since G · x = G · x′, we know that the stabilizers have the same
cardinality, therefore Gx′ = gGxg

−1.

(b) For a proper subgroup H of a finite group G, there are at most [G : H] many distinct
conjugate subgroups gHg−1. But these groups all share a common identity element,
so there are at most [G : H](|H| − 1) + 1 many elements in their union, which is
strictly less than |G|. So G cannot be equal to the union.

(c) Suppose we have a transitive action of a finite group G on a finite set X , then we
have by part (a) and (b),

⋃
x∈X Gx =

⋃
g∈G gGx0g

−1 ⊊ G. Pick an h ∈ G \⋃
x∈X Gx, then by definition h fixes none of x ∈ X , i.e. h · x ̸= x for all x ∈ X .

Therefore we have proved the statement.
Alternatively, we can resort to Burnside’s lemma and prove this result without using
part (a) and (b). Suppose G acts transitively on X , then there is only one orbit,



|X/G| = 1. Assume on the contrary that for all g ∈ G there is some x ∈ X being
fixed g · x = x, in other words |Xg| ≥ 1. Then by Burnside’s lemma,

|X/G| = 1

|G|
∑
g∈G

|Xg| =
|Xe|+

∑
g ̸=e |Xg|

|G|
=

|X|+ |G| − 1

|G|
> 1,

which is a contradiction.

5. Let G be the group of all orientation preserving rotations in R3, i.e. G consists of all
3×3 orthogonal matrices which have determinant 1. This is called the special orthogonal
group G = SO(3) = {A ∈ GL(R3) : AAT = I, det(A) = 1}. You can simply think
of it as the group of all rotations acting on the unit sphere S2. This action is transitive
because given any two points, you can connect them by a great circle and rotate along the
circular arc. However, any non-identity rotation is really just rotating along some axis,
hence must fix a pair of antipodal points. Therefore the statement of Q4c does not hold
in this case.

The result of Q4c fails in general because the statement of Q4b no longer holds if we just
take an infinite group G with arbitrary subgroup H whose index is infinite. For example,
let U ⊂ GL(n,C) be the subgroup of upper triangular matrices. This is an infinite index
subgroup with GL(n,C) =

⋃
A∈GL(n,C) AUA−1 since any matrix is conjugate to an upper

triangular matrix. The same phenomenon happens for SO(3) above, the subgroup H ≤
SO(3) consisting of rotations along a fixed axis satisfies SO(3) =

⋃
A∈SO(3)AHA−1.

6. We can let G acts on the conjugacy class C, by ρ(g) : c 7→ gcg−1. This is a transitive
action on a finite set C by definition. Hence by Q4c, there must be some g ∈ G acting
freely on C, in other words gcg−1 ̸= c for all c ∈ C, i.e. such g does not commute with
any c ∈ C.

Here is aheuristic for why Burnside’s lemma is true that I described in the tutorial. If M =
1
|G|

∑
g∈G |Xg| is the average number of x fixed by g, we can determine the average number

of g fixing a particular x: since there are |G| · M many fixed points of the group action, on
average there are |G|·M

|X| many g fixing an x. Note that this number is also the average size of

the stabilizer of x. So we can then determine the average size of the orbit by |G|/ |G|·M
|X| = |X|

M
.

Therefore the number of orbits should be |X|
average size of orbit = |X|/ M

|X| = M .


